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The knowledge of soil electrical and thermal resistivities is essential for several engineering projects such
as laying of high voltage buried power cables, nuclear waste disposal, design of fluidized thermal beds,
ground modification techniques etc. This necessitates precise determination of these resistivities, and
relationship between them, which mainly depend on the soil type, its origin, compaction density and
saturation. Such a relationship would also be helpful for determining one of these resistivities, if the
other one is known. With this in view, efforts were made to develop artificial neural network (ANN)
models that can be employed for estimating the soil electrical resistivity based on its soil thermal
resistivity and the degree of saturation. To achieve this, measurements of electrical and thermal resis-
tivities were carried out on different types soils compacted at different densities and moisture contents.
These models were validated by comparing the predicted results vis-à-vis those obtained from experi-
ments. The efficiency of these ANN models in predicting the soil electrical resistivity has been demon-
strated, if its thermal resistivity is known. These ANN models are found to yield better results as
compared to the generalized relationships proposed by the earlier researchers.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

The soil electrical resistivity, RE, is a measure of the resistance
offered by the soil against passage of current through it. The
knowledge of RE has been used to predict various soil parameters,
phenomenon and mechanisms occurring in soils, such as for
obtaining the soil water content [1], degree of compaction [2] and
saturation [3], estimating liquefaction potential of the soil [4],
detecting and locating geomembrane failures [5], to estimate
corrosive effects of soil on buried steel [6], for designing earthing
resistance of the grounding systems [7], to study the electro-osmosis
phenomenon in soils [8], investigating the effects of soil freezing [9]
and for estimating the soil salinity for agricultural activities [10].

These studies highlight that determination of RE, depends on
several parameters such as frequency of the current used, geometry
and type of the electrodes used etc., and is a cumbersome process
[11]. While, soil thermal resistivity, RT, can be determined easily and
rapidly by employing the transient heat method [12–15]. In addi-
tion, both RE and RT are strongly influenced by soil type, its origin
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and the degree of saturation. Based on the transient heat method
generalized relationships have been developed, which can be
utilized for determining RT [15,16].

Hence, determination of RE of the soil by relating it to its RT would
be of great help to professionals. Singh et al. [17] have proposed the
following generalized relationship between RE and RT as follows:

logðREÞ ¼ CRlogðRTÞ (1)

where CR is a constant and its values can be obtained from Eq. (2):

CR ¼ 1:34þ 0:0085� F (2)

where F is the percentage sum of the gravel and sand size fractions
in the soil.

However, it must be noted that Eq. (2) does not take into account
the saturation, Sr, of the soil, which influences both RE and RT [18],
quite substantially. To overcome this limitation, Sreedeep et al. [18]
proposed Eq. (3).

CR ¼ X þ Y$eð�Sr�ZÞ (3)

where X, Y and Z are constant parameters, which mainly depend on
the type of the soil, as depicted in Equations (4)–(6), respectively.
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Nomenclature

gd dry-unit weight of the soil (g/cc)
m momentum factor
r resistance per unit length (U/cm)
CR constant
F percentage sum of the gravel and sand size fractions

(%)
G specific gravity
i current (Amp)
I number of input parameters
Learngdm gradient descent with momentum weight/bias

learning function
MAE mean absolute error
Nh1 lnumber of neurons in the hidden layer
Q heat input per unit length

RE electrical resistivity (U m)
RMSE root mean square error
RT thermal resistivity (�C.m/W)
Sr degree of saturation (%)
Trainlm Levenberg-Marquardt training algorithm
Trainscg Scaled Conjugate Gradient training algorithm
VAF variance account for
var variance
w moisture content (%)
x actual value
X, Y, & Z constant parameters
xmax maximum value
xmin minimum value
xnorm normalized value
y measured value
ŷ predicted value
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X ¼ ½1:1þ 0:01� F� (4)

Y ¼ ½0:9� 0:01� F� (5)

Z ¼
h
0:02þ 0:0006� eðF=25Þ

i
(6)

Though, the utility and efficiency of these relationships was
demonstrated by Sreedeep et al. [18], these relationships are
derived based on simple interpolation and extrapolation of exper-
imental results obtained by testing different types of locally avail-
able soils compacted at different densities and moisture content.
Hence, in order to generate much confidence in using these rela-
tionships, better computational algorithms (viz., artificial neural
networks) that are capable of incorporating the interdependence of
several parameters must be employed.

Artificial neural networks (ANNs) offer an interesting approach
for modeling soil behavior [19–21]. ANN is an oversimplified
simulation of the human brain [21] and is accepted as a reliable
data-modeling tool to capture and represent complex relationships
between inputs and outputs [22]. Recently, ANNs have been
effectively applied to model the behavior of the soil such as lique-
faction of soils [23], soil classification [24], compaction of soils [25],
determination of pile capacity [26,27], settlement analysis [28],
thermal properties of soils [29] and stress-strain modeling [21,30].

With this in view, efforts were made to develop ANN models that
can be employed for predicting RE by employing different soil prop-
erties such as RT, Sr and F. To show the efficiency of these models,
results predicted from them were compared vis-à-vis those obtained
from Equations (1)–(3). In addition, the performance indices such as
coefficient of determination, root mean square error, mean absolute
error, and variance were used to assess the performance of the ANN
models.
2. Artificial Neural Networks

Artificial neural networks (ANNs) are computational model,
which is based on the information processing system of the human
brain [21]. The current interest in ANNs is largely due to their ability
to mimic natural intelligence in its learning from experience
[31–35]. A typical structure of ANNs is composed of a number of
interconnected processing elements (PEs), commonly referred to as
neurons. The neurons are logically arranged in layers: an input
layer, an output layer and one or more hidden layers. The neurons
interact with each other via weighted connections. Each neuron is
connected to all the neurons in the next layer. The input layer is the
means by which data are presented to the network. The output
layer holds the response of the network to the input. The hidden
layers enable these networks to represent and compute compli-
cated associations between inputs and outputs. This ANN
architecture is commonly referred to as a fully interconnected feed-
forward multi-layer perceptron (MLP). In addition, there is also
a bias, which is only connected to neurons in the hidden and output
layers, with modifiable weighted connections.

Currently, there is no analytical way of defining the network
structure as a function of the complexity of the problem. The structure
must be manually selected using a trial-and-error process. ANNs with
one or two hidden layers and adequate number of hidden neurons are
found to be quite useful for most problems [36,37]. The number of
neurons in the hidden layers depends on the nature of the problem.
There are various methods to determine the number of neurons in the
hidden layer [38–41]. However, these methods present general
guidelines only for selection of an adequate number of neurons.

The back-propagation learning algorithm is the most popular
and extensively used neural network algorithm [42,43]. The back-
propagation neural network has been applied with great success to
model many phenomena in the field of geotechnical and geo-
environmental engineering [44–46]. The back-propagation
learning algorithm basically involves two phases: the feed-forward
pass and backward pass process. In the forward phase, the pro-
cessing of information is propagated from the input layer to the
output layer. In the backward phase, the difference between
obtained network output value from feed-forward process and
desired output is propagated backwards in order to modify the
weightings and bias values. The training of the network is achieved
by adjusting the weights and is carried out through a large number
of training sets and training cycles. The goal of the training proce-
dure is to find the optimal set of weights which would produce the
right output for any input in the ideal case [22]. Training the
weights of the network is iteratively adjusted to capture the rela-
tionships between the input and output patterns.

The performance of the overall ANN model can be assessed by
several criteria [21,47–49]. These criteria include coefficient of
determination R2, mean squared error, mean absolute error,
minimal absolute error, and maximum absolute error. A well-
trained model should result in an R2 value close to 1 and small
values of error terms.

In this study, prediction of electrical resistivity, RE, of the soil
has been modeled using the ANN and multiple regression



Table 1
Details of the onshore samples.

Sample G F (%) w (%) gd (g/cc) Sr (%) RT (�C m/W) RE (U m) CR(EXPT.) CR(Eq. (3)) CR(Eq. (2)) USCS

A 2.67 100 1.06 4.64 8.2 2.62 526.32 1.95 2.04 2.19 SP
1.45 4.78 15.2 1.47 232.56 2.02 2.06 2.19
1.62 4.36 18.0 1.21 169.49 2.03 2.06 2.19
1.72 4.42 21.6 1.04 156.25 2.08 2.07 2.19
1.36 13.11 36.5 1.08 126.58 2.02 2.09 2.19
1.57 12.57 48.2 0.81 92.59 2.08 2.09 2.19
1.71 12.60 60.5 0.66 80 2.15 2.1 2.19
1.81 12.16 68.6 0.58 71.43 2.19 2.1 2.19

B 2.58 55 1.29 9.71 25.2 2.4 18.38 1.37 1.83 1.81 SC
1.47 9.43 32.2 1.91 11 1.33 1.8 1.81
1.62 9.94 43.2 1.46 7.54 1.33 1.77 1.81
1.77 9.40 53.2 1.24 5.86 1.32 1.74 1.81
1.54 15.57 59.4 1.15 1.66 1.08 1.73 1.81
1.68 15.08 72.1 0.96 2.22 1.18 1.71 1.81
1.78 14.64 83.8 0.85 4.28 1.36 1.69 1.81

C 2.64 76 1.56 9.67 36.8 1.16 82.64 1.9 1.9 1.99 SM
1.90 9.60 64.8 0.72 49.26 1.99 1.88 1.99
1.99 8.84 72.0 0.67 42.55 1.98 1.87 1.99
2.13 8.61 94.2 0.56 38.02 2.04 1.87 1.99
1.84 12.39 75.5 0.66 29.07 1.9 1.87 1.99
1.94 12.54 91.2 0.57 21.46 1.9 1.87 1.99
2.04 12.39 110.6 0.49 18.87 1.93 1.86 1.99
2.05 12.06 111.2 0.5 18.25 1.92 1.86 1.99

D 2.7 12 1.29 10.33 25.4 3.18 64.1 1.52 1.68 1.44 ML
1.52 10.30 36.0 2.29 29.85 1.47 1.59 1.44
1.64 10.24 42.9 1.94 23.15 1.47 1.54 1.44
1.72 9.75 46.3 1.82 20.79 1.47 1.52 1.44
1.25 15.99 37.2 2.33 46.3 1.55 1.58 1.44
1.49 15.33 51.1 1.7 21.41 1.49 1.49 1.44
1.63 15.16 62.6 1.4 15.58 1.49 1.43 1.44
1.78 14.45 75.8 1.17 12.25 1.49 1.38 1.44

E 2.56 60 1.15 9.83 20.5 2.6 105.26 1.67 1.87 1.85 GC
1.31 11.41 30.7 1.82 60.61 1.67 1.83 1.85
1.44 11.26 37.0 1.52 47.17 1.68 1.81 1.85
1.60 10.30 44.4 1.31 32.68 1.66 1.79 1.85
1.32 15.37 41.8 1.46 42.55 1.68 1.8 1.85
1.47 16.09 55.9 1.15 33.44 1.71 1.77 1.85
1.76 12.18 68.3 0.91 25.45 1.74 1.75 1.85
1.85 13.62 90.8 0.74 21.01 1.78 1.73 1.85

F 2.64 35 1.27 9.26 22.7 3.13 14.73 1.27 1.78 1.64 CL
1.46 9.33 30.6 2.36 8.85 1.24 1.73 1.64
1.56 9.12 34.7 2.1 7.55 1.24 1.7 1.64
1.66 8.89 39.9 1.88 6.08 1.22 1.67 1.64
1.36 17.07 47.8 1.65 2.68 1.09 1.64 1.64
1.53 14.93 54.4 1.41 2.2 1.09 1.61 1.64
1.70 15.05 72.3 1.1 1.73 1.1 1.56 1.64

G 2.6 20 1.23 11.30 26.4 2.99 36.23 1.44 1.7 1.51 CH
1.44 11.61 37.6 2.16 19.01 1.4 1.61 1.51
1.51 11.60 42.1 1.96 14.22 1.38 1.59 1.51
1.63 10.80 47.5 1.76 11.29 1.36 1.55 1.51
1.35 19.58 54.7 1.69 5.17 1.22 1.52 1.51
1.45 18.70 61.2 1.5 5.42 1.26 1.49 1.51
1.60 18.49 77.4 1.22 6.48 1.35 1.43 1.51

H 2.64 24 1.27 10.56 25.7 3.13 28.74 1.39 1.72 1.54 CH
1.49 8.80 30.1 2.84 41.32 1.47 1.69 1.54
1.40 11.20 33.5 2.44 11.78 1.29 1.66 1.54
1.40 13.42 40.1 2.07 6.49 1.21 1.62 1.54
1.29 17.54 44.5 1.99 4.33 1.15 1.59 1.54

I 2.66 23 1.50 9.99 34.4 2.48 39.37 1.50 1.65 1.54 CH
1.43 12.66 39.1 2.15 11.11 1.31 1.62 1.54
1.36 13.71 38.3 2.22 5.75 1.18 1.62 1.54
1.33 16.13 43.2 2.04 3.88 1.12 1.59 1.54

J 2.65 24 1.51 9.4 32.9 2.55 38.17 1.49 1.66 1.54 CH
1.50 10.7 37.0 2.23 16.21 1.37 1.64 1.54
1.41 12.57 38.0 2.17 5.49 1.17 1.63 1.54
1.25 18.96 45.0 2.02 3.64 1.11 1.59 1.54

K 2.56 23 1.47 9.2 32.0 2.90 34.60 1.44 1.67 1.54 CH
1.52 10.37 38.9 2.33 12.17 1.30 1.62 1.54
1.34 19.04 53.9 1.81 2.29 1.04 1.54 1.54

L 2.65 27 1.44 11.38 35.7 2.25 17.89 1.38 1.66 1.57 CH
1.42 12.75 39.0 2.09 10.53 1.30 1.64 1.57
1.51 8.86 30.9 2.72 28.90 1.42 1.69 1.57
1.29 20.33 51.0 1.80 2.85 1.09 1.58 1.57
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Table 1 (continued )

Sample G F (%) w (%) gd (g/cc) Sr (%) RT (�C m/W) RE (U m) CR(EXPT.) CR(Eq. (3)) CR(Eq. (2)) USCS

M 2.62 22.5 1.47 9.87 32.8 2.60 33.22 1.46 1.66 1.53 CH
1.47 11.37 38.2 2.23 14.39 1.34 1.62 1.53
1.35 13.52 37.5 2.26 7.09 1.21 1.63 1.53
1.41 12.56 38.5 2.21 6.45 1.20 1.62 1.53
1.34 19.4 53.2 1.77 4.63 1.19 1.54 1.53

N 2.56 21 1.37 9.88 28.9 3.10 38.02 1.44 1.68 1.52 CH
1.37 11.62 34.3 2.59 11.99 1.28 1.64 1.52
1.40 12.91 39.9 2.25 6.14 1.19 1.60 1.52
1.31 17.19 46.4 2.05 2.97 1.07 1.57 1.52
1.34 22.84 63.7 1.64 2.09 1.05 1.49 1.52

O 2.64 27.5 1.40 8.9 26.7 3.15 62.89 1.52 1.72 1.57 CH
1.44 12.8 40.3 2.01 8.06 1.26 1.63 1.57
1.43 14.62 45.7 1.83 5.18 1.20 1.61 1.57
1.33 14.15 38.0 2.16 4.74 1.15 1.65 1.57
1.20 21.88 48.0 1.95 3.07 1.09 1.59 1.57

P 2.61 36 1.51 8.27 29.9 2.68 38.02 1.47 1.74 1.65 CI
1.53 7.84 29.0 2.83 17.06 1.32 1.74 1.65
1.35 16.45 45.9 1.74 5.08 1.21 1.65 1.65
1.43 22 69.2 1.30 2.06 1.09 1.57 1.65

Q 2.67 25 1.49 7.95 26.9 3.18 33.00 1.41 1.71 1.55 CI
1.52 8.94 31.7 2.57 14.29 1.31 1.68 1.55
1.38 13.21 37.6 2.11 9.17 1.27 1.64 1.55
1.49 19.12 64.9 1.39 4.78 1.25 1.51 1.55
1.28 24.6 60.1 1.63 1.86 1.03 1.53 1.55

R 2.57 35 1.32 16.4 44.7 1.86 6.17 1.23 1.65 1.64 CH
1.31 19.97 53.3 1.67 4.76 1.21 1.62 1.64

S 2.66 23.5 1.39 11.08 32.1 2.54 16.81 1.34 1.67 1.54 CH
1.39 18.71 54.5 1.67 4.93 1.21 1.54 1.54
1.18 28.75 61.0 1.78 2.38 1.06 1.51 1.54

T 2.61 35.5 1.49 9.4 32.6 2.36 17.48 1.37 1.72 1.64 CH
1.41 17.95 54.8 1.52 2.85 1.13 1.61 1.64
1.28 22.2 55.4 1.62 1.82 1.02 1.61 1.64
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analysis (MRA). In ANN models, network training was accom-
plished with the neural network toolbox written in Matlab
environment [50]. While, the Levenberg-Marquardt [50] and the
Scaled Conjugate [51] learning algorithms were used in the
training stage. Details of the experimental investigations, which
have yielded the data used in both models, are presented in the
following section.
3. Experimental investigations

Undisturbed soil samples from various onshore and offshore
locations in India, where major infrastructure development is
taking place, were collected. For establishing particle-size
Table 2
Details of the offshore samples.

G F (%) w (%) gd (g/cc) Sr (%) RT (�C m/W) RE (U m) USCS

2.49 1 63.45 0.96 99.6 2.05 1.28 CH
2.52 2 63.57 0.97 100.0 1.80 0.61 CH
2.53 1 53.88 0.97 84.9 1.99 0.74 MH
2.61 1 75.52 0.88 99.9 2.20 0.93 CH
2.48 1 64.89 0.95 99.8 2.06 0.96 CH
2.48 1 64.80 0.94 97.6 2.07 0.78 CH
2.51 1 58.43 1.02 99.9 1.93 0.97 CH
2.45 5 71.43 0.89 99.9 2.07 0.97 CH
2.5 1 57.12 1.03 99.9 1.83 0.93 CH
2.49 1 59.26 1.01 99.9 1.92 0.92 CH
2.53 1 54.91 1.06 100.0 1.80 0.84 CH
2.51 1 61.65 0.98 99.9 2.00 0.76 CH
2.42 5 57.59 1.01 100.0 1.92 0.70 CH
2.52 3 62.59 0.98 100.0 1.96 0.61 CH
2.48 1 56.33 1.03 99.9 1.84 0.75 CH
2.48 0 76.05 0.86 100.0 2.24 0.60 CH
2.49 5 52.75 1.07 99.6 1.89 0.67 CH
2.46 0 59.03 1.00 100.0 2.03 1.42 CH
distribution characteristics of these samples, dry-sieving, and
whenever required hydrometer analysis, was conducted [52]. The
specific gravity G of these materials was determined by using an
Ultra-pycnometer (Quantachrome�, USA), which employs Helium
gas [53]. For the sake of generality, six tests were conducted on each
soil sample and the average value was considered as the repre-
sentative G, as listed in Tables 1 and 2 for the onshore and offshore
samples, respectively. The sulphite and chloride contents of
onshore samples are found to be 5–10 ppm, and 25–50 ppm,
respectively. However, for the offshore samples the sulphite and
chloride contents are quite high (5–10 ppm, and 500–1000 ppm),
respectively. These samples were also tested for RE and RT,
respectively, as described in the following, and the results are
presented in Table 1 and Table 2, respectively.
Fig. 1. The setup used for determining electrical resistivity of the soil sample.



Table 3
RE and RT of the soils used by Sreedeep et al. [18] and Abu-Hassanein [11].

Soil G F w (%) gd (g/cc) Sr (%) RT (�C.m/W) RE (U.m) CR(EXPT.) CR(Eq. (3)) CR(Eq. (2))

1 2.65 0 9.8 0.89 13.1 39.22 329.42 1.26 1.79 1.34
16.1 1.03 27.6 19.81 111.96 1.23 1.61 1.34
18.1 1.0 29.6 20.68 119.79 1.23 1.59 1.34
16.7 1.06 30.0 18.83 106.39 1.23 1.59 1.34
17 1.12 33.7 18.12 86.58 1.21 1.55 1.34
21.2 1.17 45.4 13.75 62.9 1.21 1.45 1.34
25.9 1.13 52.1 56.04 13.89 1.19 1.41 1.34
27.7 1.17 59.1 47.19 12.62 1.18 1.37 1.34
29.8 1.26 73.3 25.39 8.52 1.16 1.30 1.34
30.7 1.29 79 17.91 7.31 1.14 1.28 1.34
37.1 1.25 89.8 26.96 8.38 1.17 1.24 1.34
38.7 1.24 92.1 55.14 12.45 1.21 1.23 1.34

2 2.75 24 – – 41 10.60 44.77 1.21 1.61 1.54
– – 46 10.17 43.83 1.21 1.58 1.54
– – 54 8.00 27.87 1.19 1.55 1.54
– – 63 7.30 25.53 1.19 1.51 1.54
– – 64 6.42 18.19 1.16 1.51 1.54
– – 78 6.70 22.63 1.19 1.46 1.54
– – 79 6.49 23.17 1.20 1.46 1.54
– – 87 5.66 16.58 1.17 1.44 1.54
– – 90 5.42 15.21 1.16 1.43 1.54
– – 90 5.16 13.36 1.15 1.43 1.54
– – 91 5.38 15.02 1.16 1.43 1.54
– – 93 5.16 13.83 1.16 1.43 1.54
– – 94 5.55 17.21 1.18 1.43 1.54
– – 96 5.24 14.62 1.16 1.42 1.54
– – 97 5.25 15.15 1.17 1.42 1.54

3 2.80 6 – – 38 10.02 28.94 1.15 1.54 1.39
– – 39 8.87 22.67 1.14 1.53 1.39
– – 47 6.27 11.71 1.10 1.48 1.39
– – 53 5.28 8.99 1.08 1.44 1.39
– – 60 5.23 9.17 1.09 1.40 1.39
– – 66 5.32 10.73 1.11 1.37 1.39
– – 71 4.50 7.51 1.08 1.35 1.39
– – 71 4.51 7.64 1.09 1.35 1.39
– – 87 3.98 6.36 1.08 1.30 1.39
– – 87 3.51 5.25 1.07 1.30 1.39
– – 92 3.71 5.8 1.08 1.28 1.39
– – 95 3.45 5.25 1.07 1.28 1.39
– – 97 3.26 4.94 1.07 1.27 1.39
– – 99 3.13 4.45 1.06 1.27 1.39

4 2.69 47 – – 41 13.18 82.28 1.26 1.73 1.74
– – 46 11.69 66.99 1.25 1.71 1.74
– – 55 10.05 52.93 1.24 1.69 1.74
– – 59 9.85 47.72 1.23 1.67 1.74
– – 71 8.16 34.03 1.21 1.65 1.74
– – 75 7.67 30.64 1.21 1.64 1.74
– – 78 7.89 31.5 1.21 1.64 1.74
– – 80 8.33 33.06 1.20 1.63 1.74
– – 89 7.28 29.22 1.21 1.62 1.74
– – 91 6.78 24.92 1.20 1.62 1.74
– – 92 7.58 31.27 1.21 1.62 1.74
– – 94 7.49 31.29 1.22 1.62 1.74
– – 95 7.54 30.41 1.21 1.61 1.74
– – 99 7.02 26.91 1.21 1.61 1.74

5 2.80 38 – – 32 13.37 70.27 1.23 1.73 1.66
– – 37 11.53 53.81 1.22 1.70 1.66
– – 50 8.36 34.66 1.21 1.65 1.66
– – 56 9.49 46.91 1.23 1.63 1.66
– – 58 7.39 28.78 1.21 1.62 1.66
– – 67 10.43 53.81 1.24 1.59 1.66
– – 86 6.82 28.78 1.22 1.55 1.66
– – 87 5.91 21.99 1.21 1.55 1.66
– – 92 5.61 20.09 1.20 1.54 1.66
– – 93 5.63 20.56 1.20 1.54 1.66
– – 94 5.46 19.2 1.20 1.54 1.66
– – 95 5.47 18.9 1.20 1.54 1.66
– – 96 5.67 21.55 1.21 1.54 1.66
– – 100 5.96 24.42 1.22 1.89 1.66

6 2.70 6 – – 34 8.16 16.65 1.11 1.57 1.39
– – 36 8.52 18.82 1.12 1.56 1.39
– – 43 6.67 12.72 1.10 1.50 1.39
– – 50 5.84 10.65 1.09 1.46 1.39
– – 54 5.25 9.23 1.09 1.43 1.39
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Table 3 (continued )

Soil G F w (%) gd (g/cc) Sr (%) RT (�C.m/W) RE (U.m) CR(EXPT.) CR(Eq. (3)) CR(Eq. (2))

– – 62 4.83 8.26 1.09 1.39 1.39
– – 64 4.47 7.21 1.08 1.38 1.39
– – 72 4.47 7.54 1.09 1.35 1.39
– – 73 4.09 6.52 1.08 1.34 1.39
– – 82 3.90 6.11 1.08 1.31 1.39
– – 88 3.74 6.02 1.08 1.30 1.39
– – 90 3.69 5.99 1.08 1.29 1.39
– – 94 3.56 5.56 1.08 1.28 1.39
– – 96 3.31 4.97 1.07 1.27 1.39

7 2.80 6 – – 58 8.69 28.56 1.18 1.41 1.39
– – 74 6.10 14.52 1.14 1.34 1.39
– – 90 5.18 9.85 1.10 1.29 1.39
– – 92 4.73 8.66 1.10 1.28 1.39
– – 95 4.94 9.97 1.11 1.28 1.39

8 2.78 19 – – 42 6.48 13.67 1.12 1.58 1.50
– – 62 4.73 8.94 1.06 1.48 1.50
– – 89 4.06 7.95 1.07 1.40 1.50
– – 91 4.01 7.8 1.08 1.39 1.50
– – 92 4.20 8.37 1.09 1.39 1.50

9 2.68 48 – – 36 11.29 54.57 1.22 1.76 1.75
– – 59 7.93 35.21 1.22 1.68 1.75
– – 86 7.37 41.88 1.26 1.63 1.75
– – 87 6.31 25.56 1.22 1.63 1.75
– – 100 5.74 22.86 1.22 1.62 1.75

10 2.68 36 – – 41.6 18.60 377.82 1.40 1.67 1.65
– – 63 14.41 243.76 1.39 1.59 1.65
– – 91.1 12.05 168.45 1.37 1.53 1.65
– – 93.5 13.09 162.85 1.35 1.53 1.65
– – 93.7 12.19 141.43 1.34 1.53 1.65

11 2.67 46 – – 24 16.73 90.71 1.24 1.75 1.73
– – 36 11.43 62.88 1.26 1.62 1.73
– – 82 7.25 40.67 1.22 1.62 1.73
– – 87 6.56 27.94 1.24 1.61 1.73
– – 90 6.69 31.23 1.13 1.59 1.44

12 2.90 12 – – 36 8.27 19.65 1.09 1.53 1.44
– – 44 5.58 10.02 1.09 1.37 1.44
– – 80 3.81 6.5 1.10 1.36 1.44
– – 83 3.91 7.04 1.10 1.35 1.44
– – 86 3.87 7.02 1.24 1.75 1.73

–: Data not available.
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3.1. Measurement of electrical resistivity

The test setup depicted in Fig. 1 was fabricated and employed for
measuring RE of the sample. This setup made of Perspex, consists of
two 10 mm thick square plates of size 100 mm and on one face of
these plates a stainless steel plate of size 50� 50� 2 mm, which
acts as an electrode, is fitted. These electrodes are mirror-finished
and passivated in order to avoid electrode polarization and to
minimize the interfacial effect during the resistivity measurements.
The bolt and screw mechanism helps in fixing the sample of
different thicknesses in between the electrodes. From the UDS tube,
a sample of size 38 mm diameter and 30 mm thickness was
extruded and its weight and dimensions were recorded. This helps
in determining the total unit weight, gt, of the sample. Later, this
sample was trimmed and a conducting paint (Silver oxide) was
applied on the top and bottom faces of the sample, which act as two
electrodes. This arrangement helps in application of a uniform
voltage difference across the sample when it is inserted between
Table 4
Boundaries of the parameters used for the models developed.

Data type Model parameters Minimum value Maximum value

Input Sr (%) 8 111
F (%) 0 100
RT (�C m/W) 0.5 39.2

Output RE (U m) 0.6 526.3
the plate electrodes. RE of the sample was measurement by using an
impedance analyzer (SOLARTRON�-1260) and fixing the frequency
of AC as 2 Hz. During the experimentation room temperature
(25�1�C) and the relative humidity (60�1%) were maintained.
Later, the sample was kept in the oven to determine its gravimetric
water content, w, and hence the dry-unit weight, gd.
3.2. Measurement of thermal resistivity

A thermal probe, which operates on the principle of ‘‘Transient
method’’ [12–18,54], was fabricated and used in this study. The
probe consists of an insulated Nichrome heater wire of resistance,
r(¼0.19 U/cm), inserted in a copper tube of 140 mm length and
2.5 mm external diameter. A thermocouple is attached on the inner
surface of the tube. The heat input per unit length, Q, is equal to i2.r
(in W/cm), where, i is the current passing in the heater wire. The
calibration of this probe was achieved by using a standard liquid
glycerol with thermal resistivity RT equal to 349 �C cm/W [13,14,54].
The RT of the glycerol was found to be equal to 357 �C cm/W (for
i¼ 0.5 Amp), which is only 2.4% higher than the standard value. A
metal container (150 mm long and 100 mm diameter) was used to
prepare the soil samples corresponding to a particular density and
moisture content. A 2 mm diameter hole was drilled in the soil
sample and the thermal probe was fitted tightly into it. The probe
was allowed to achieve thermal equilibrium in the soil mass for
about 2 min and then the power supply to the probe was switched



Table 5
The details of the optimal performance of the ANN-1 model.

ANN-1 model Training function used Epoch number Performance indices

Data set MAE (U m) RMSE (U m) VAF (%) R2

211 Trainlm 15 Training 21.15 40.31 62.93 0.629
Validation 15.28 26.74 64.38 0.644
Testing 13.68 20.46 75.63 0.757

Trainscg 37 Training 20.87 40.63 62.36 0.625
Validation 15.82 26.92 64.45 0.645
Testing 14.31 20.61 75.99 0.760

221 Trainlm 19 Training 14.86 25.57 85.09 0.851
Validation 12.42 22.38 74.85 0.752
Testing 9.68 14.06 89.16 0.894

Trainscg 30 Training 20.60 41.62 60.53 0.629
Validation 14.99 29.90 55.05 0.565
Testing 11.52 19.90 76.55 0.767

231 Trainlm 23 Training 12.61 16.84 93.56 0.936
Validation 9.18 12.07 92.74 0.928
Testing 8.13 11.00 92.69 0.928

Trainscg 37 Training 19.09 37.76 67.47 0.675
Validation 11.52 19.88 80.10 0.802
Testing 8.62 13.74 88.55 0.893

241 Trainlm 35 Training 10.65 15.64 94.43 0.944
Validation 8.66 11.68 93.38 0.937
Testing 7.65 9.93 94.67 0.951

Trainscg 36 Training 16.61 31.39 78.32 0.784
Validation 11.02 20.08 80.30 0.820
Testing 8.23 12.95 90.44 0.913

251 Trainlm 39 Training 10.68 15.67 94.41 0.944
Validation 8.08 11.93 93.04 0.936
Testing 6.67 9.15 95.54 0.957

Trainscg 34 Training 17.07 38.72 66.18 0.663
Validation 11.68 23.13 73.31 0.769
Testing 8.30 13.70 88.84 0.891

Y. Erzin et al. / International Journal of Thermal Sciences 49 (2010) 118–130124
on. The temperature of the probe was recorded as a function of time
and was used to compute the thermal resistivity of the soil [14,54].
4. Development of ANN models

As mentioned earlier, the multiplier CR used in the relationship
Eq. (2) includes the type of the soil (i.e. its physical composition)
only, while CR in the relationship Eq. (3) includes both the type of
soil and its saturation. Keeping this in view, two ANN models (ANN-
1 and ANN-2) were developed for predicting RE. The model ANN-1
takes into account the effect of soil type only (and hence has two
input parameters, F and RT). While, the model ANN-2 takes into
consideration the effect of both soil type and its saturation (and
hence has three input parameters, Sr, F and RT). Both models have
one output parameter RE.

In addition to the data obtained by conducting experiments on
the onshore and offshore samples (refer Tables 1 and 2), the data
reported by Sreedeep et al. [18] and Abu-Hassanein [11] for
different types of soils, with their resistivities listed in Table 3, were
also used to develop these models. It can be noticed from Table 3
that w and gd for soils 2–12 are not available and as such Sr, which
reflects the compaction state of the soil mass was used as an input
parameter in ANN-2 model. The boundaries for input and output
parameters of the models are listed in Table 4. The input-output
data of both ANN models were scaled to lie between 0 and 1 by
using Eq. (7).

xnorm ¼
ðx� xminÞ
ðxmax � xminÞ

(7)

where xnorm is the normalized value, x is the actual value, xmax is the
maximum value and xmin is the minimum value.

It is a common practice to divide the available data into two
subsets; a training set, to construct the neural network model, and
an independent validation set to estimate model performance in
the deployed environment [55]. However, dividing the data into
only two subsets may lead to model over fitting. Over fitting makes
multi-layer perceptrons (MLPs) memorize training patterns in such
a way that they cannot generalize well to new data [21]. As a result,
cross validation technique [56] was used as the stopping criterion
in this study. In this technique, the database is divided into three
subsets: training, validation and testing. The training set is used to
update networks’ weights. One pass through the set of training
patterns together with the associated updating of the weights is
called a cycle or an epoch. During this process the error on the
validation set is monitored. When the error on the validation set
begins to increase, the training is stopped because it is considered
to be the best point of generalization. Finally, testing data is fed into
the networks to evaluate their performance. Therefore, a dataset of
236 (listed in Tables 1–3) was divided randomly into three subsets:
training (56%), testing (24%), and validation (20%). Training dataset
includes 132 soils (59 onshore soils, 11 offshore soils and 62 soils
used by Sreedeep et al. [18] and Abu-Hassanein [11]). Testing
dataset includes a dataset of 57 (25 onshore soils, 4 offshore soils
and 28 soils used by Sreedeep et al. [18] and Abu-Hassanein [11]).
However, the validation data set includes 21 onshore soils, 5
offshore soils and 21 soils used by Sreedeep et al. [18] and Abu-
Hassanein [11].

It has been shown that a network with one hidden layer can
approximate any continuous function, provided that sufficient
connection weights are used [57]. To be in line with this assump-
tion, one hidden layer was used. Choosing an appropriate number
of neurons in the hidden layers is extremely important aspect in the
back-propagation networks. Using too many neurons will increase
the training time and may cause the over fitting problem (memo-
rizing the training pattern rather than generalizing the prediction).
On the other hand, using fewer hidden neurons often increases the
likelihood of learning algorithm becoming trapped in a local



Table 6
The details of the optimal performance of the ANN-2 model.

ANN-2 model Training function used Epoch number Performance indices

Data set MAE (U m) RMSE (U m) VAF (%) R2

311 Trainlm 34 Training 18.78 37.90 67.24 0.674
Validation 17.83 36.87 31.48 0.384
Testing 15.16 26.34 59.36 0.656

Trainscg 16 Training 19.83 38.69 65.86 0.660
Validation 15.79 27.72 62.20 0.622
Testing 14.40 21.21 74.41 0.744

321 Trainlm 14 Training 16.12 21.55 89.41 0.894
Validation 14.14 19.50 81.35 0.820
Testing 12.27 17.03 83.70 0.840

Trainscg 34 Training 15.23 26.18 84.68 0.847
Validation 13.30 22.66 74.28 0.746
Testing 10.16 14.66 87.80 0.883

331 Trainlm 44 Training 12.76 17.96 92.64 0.926
Validation 11.53 18.86 82.39 0.825
Testing 10.88 14.96 87.08 0.876

Trainscg 33 Training 14.47 26.84 84.58 0.838
Validation 12.53 24.15 70.52 0.748
Testing 8.67 14.30 87.76 0.918

341 Trainlm 78 Training 7.97 11.39 97.05 0.971
Validation 8.66 12.54 92.44 0.925
Testing 8.85 12.39 91.04 0.928

Trainscg 47 Training 16.14 26.25 84.48 0.845
Validation 12.81 21.73 77.16 0.804
Testing 9.64 15.14 87.02 0.895

351 Trainlm 30 Training 6.70 9.12 98.10 0.981
Validation 7.76 10.42 95.10 0.958
Testing 6.55 10.14 94.43 0.956

Trainscg 53 Training 13.73 24.11 87.14 0.873
Validation 11.45 21.69 76.21 0.777
Testing 8.62 13.49 89.57 0.942

361 Trainlm 47 Training 6.81 9.92 97.77 0.978
Validation 5.50 7.94 96.81 0.969
Testing 5.13 7.52 96.64 0.967

Trainscg 30 Training 13.31 21.16 89.79 0.904
Validation 10.68 17.57 84.38 0.844
Testing 8.29 14.49 87.31 0.874

371 Trainlm 114 Training 5.11 7.53 98.71 0.987
Validation 6.09 8.40 96.87 0.971
Testing 4.94 6.97 97.08 0.973

Trainscg 55 Training 11.72 18.22 92.43 0.930
Validation 11.03 18.10 85.29 0.883
Testing 8.41 13.25 91.23 0.949
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minimum [58]. In this study, the optimum number of neurons in
the hidden layer of both models was determined by varying their
number starting with a minimum of 1 then increasing the network
size up to (2Iþ 1), (I is the number of input parameters), in steps by
adding 1 neuron each time. It should be noted that (2Iþ 1) is the
upper limit for the number of hidden layer neurons needed to map
any continuous function work with I inputs [59].
Table 7
Connection weights and biases of the best ANN models selected.

Model Hidden neuron Weight

Input neurons Ou

Sr(%) F (%) RT

ANN-1 1 – 22.66 2
2 – �50.02 �5
3 – �15.52 1
4 – 22.47 �1
5 – 8.44 �

ANN-2 1 �0.07 0.27 �
2 �2.51 �15.00 �
3 6.24 �0.12 1
4 �2.08 1.39 �
5 �1.52 �14.89 �
6 �49.24 11.20
7 �4.75 2.50
The neural network toolbox of MATLAB 7.0, a popular numerical
computation and visualization software [21], was used for training
and testing of MLPs. The Levenberg-Marquardt (trainlm) [50] and
the Scaled Conjugate (trainscg) [51] training functions were used in
the training stage. The gradient descent with momentum weight/
bias learning function (learngdm) was used for adaption of the
learning function. Different transfer functions (such as log-sigmoid
Bias

tput neuron

(�C-m/Watt) RE(U m) Hidden layer Output layer

4.24 1.84 �13.00 5.98
1.74 �29.70 53.80
0.07 16.63 0.38
2.00 14.15 �1.20
8.58 5.37 8.37
6.31 �24.78 �0.13 �6.52
4.35 �16.16 7.07
0.56 5.30 �4.74
8.67 19.96 1.32
0.98 16.94 5.97
3.53 20.34 �12.32
6.62 0.73 �13.96
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Fig. 2. Comparison of the measured/predicted RE values from the model ANN-1 for a) training samples, and b) testing and validation samples.
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[60] and tan-sigmoid [36]) were investigated to achieve the best
performance in training as well as in testing. While using trainlm,
two momentum factors, m,(¼0.01 and 0.001) were selected for the
training process to search for the most efficient ANN architecture.
The root mean square error RMSE was used to evaluate the
performance of the developed ANN models. The performance of the
network was examined for each network size until no significant
improvement occurred.

5. Multiple regression analysis models for the prediction of
RE

Multiple regression analysis (MRA) was performed to predict RE

from its RT and its saturation state (Sr). To achieve this, two MRA
models (MRA-1 and MRA-2) were developed by using SPSS 8.0.0.
The experimental data for the onshore and offshore samples (refer
Tables 1 and 2) and the data reported by Sreedeep et al. [18] and
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Fig. 3. Comparison of the measured/predicted RE values from the model A
Abu-Hassanein [11], for different types of soils (Table 3), were used
in the development of these models. F and RT were included in the
model MRA-1, which yields Eq. (8). However, when F, Sr and RT

values were included in the model MRA-2, Eq. (9) was obtained.

RE ¼ �36:359þ 1:194F þ 7:28 RT R2 ¼ 0:454 (8)

RE ¼ 8:413þ 1:105F � 0:387Sr þ 6:97RT R2¼ 0:481 (9)

6. Results and discussion

In this study, apart from RMSE, the performance indices (i.e.,
variance account for, VAF, which is represented by Eq. (10), mean
absolute error, MAE, determination coefficient, R2) were also
computed to assess the performance of the developed models
[29,61–64]. In Eq. (10), var denotes the variance, y is the measured
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value, and ŷ is the predicted value. If VAF is 100%, the model is
treated as excellent.

VAF ¼
"

1�
var
�

y� by�
varðyÞ

#
� 100 (10)

Details of the optimal performance of the ANN-1 and ANN-2
models are presented in Tables 5 and 6, respectively. Tables 5 and 6
show that the optimal performance of testing data set for ANN-1
and ANN-2 models are better than the training data set. This is
possibly due to the cross validation technique [56] used as the
stopping criterion to overcome over fitting. As mentioned earlier, in
this technique, the training is stopped when the error on the
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offshore samples.
validation set begins to increase and then testing data is fed into the
networks to evaluate their performance. Later, performance of the
network for training and testing processes was examined for each
network size until no significant improvement occurred. Results
presented in Tables 5 and 6 indicate that the cross validation
technique [56] works quite well.

As mentioned earlier, a network with one hidden layer can
approximate any continuous function, provided that sufficient
connection weights are used [57]. Hence, to be in line with this
assumption, one hidden layer was used in this study. It can be noted
from Tables 5 and 6 that ANNs with one hidden layer and adequate
number of hidden neurons are found to be quite useful as observed
by earlier researchers [29,46,47].
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Table 5 shows that ANN-1 with 5 hidden neurons using trainlm
training function resulted in the minimum RMSE value of 9.15 U m
in the testing phase. Therefore, it was chosen as the best ANN-1
model. Table 6 shows that ANN-2 with 7 hidden neurons using
trainlm training function yields the minimum RMSE values of
7.53 U m and 6.97 U m in the training and testing phases, respec-
tively. Therefore, it was chosen as the best ANN-2 model. Connec-
tion weights and biases for both optimal ANN models are presented
in Table 7.

When compared the performance of the ANN-1 model (bold
values in Table 5) with the ANN-2 model (bold values in Table 6),
the ANN-2 model is able to predict electrical resistivity of different
types of soils much more efficiently. This is mainly due to the fact
that the ANN-2 model includes both the influences of physical
composition and saturation.

A comparison of the experimental results vis-à-vis those
obtained from both ANN models, for training, validation, and
testing samples, is depicted in Figs. 2 and 3. It can be noted from
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Fig. 7. Comparison of the measured/predicted RE valu
Fig. 2 that RE values obtained from ANN-1 model are quite close to
the experimentally obtained RE values. This shows that the ANN
models are able to predict electrical resistivity of different types of
soils quite efficiently, if their thermal resistivity and physical
composition are known. However, ANN-2 model (Fig. 3) is found to
yield better predictions than ANN-1 model (Fig. 2), as the R2 value is
much close to unity. As mentioned earlier, this is mainly due to the
fact that the ANN-2 model includes both the influences of physical
composition and saturation.

In addition, the measured RE values were compared vis-à-vis
with those obtained from both ANN models based on the soil types.
To achieve this, samples used were categorized into two groups
such as (a) onshore soils and the soils used by Sreedeep et al. [18]
and Abu-Hassanein [11], and (b) offshore soils. The comparison of
measured versus predicted RE values from ANN-1 model is depicted
in Fig. 4 for the first and second group samples, respectively.
Similarly, the comparison of measured versus predicted RE values
from ANN-2 model is depicted in Fig. 5 for the first and second
R
2 = 0.207

0 500 1000 1500 2000 2500 3000
0

50

1000

1500

2000

2500

3000

b

P
r
e
d

i
c
t
e
d

 
R

E
 
(
Ω

.
m

)

Measured R
E
 (Ω.m)

es from a) Eq. (2), and b) Eq. (3) for all samples.



Table 8
Performance indices for ANN, MRA and generalized models.

Model Data R2 RMSE (U m) MAE (U m) VAF (%)

ANN-1 Training set 0.944 15.67 10.68 94.41
Validation set 0.936 11.93 8.08 93.04
Testing set 0.957 9.15 6.67 95.54

ANN-2 Training set 0.987 7.53 5.11 98.71
Validation set 0.971 8.40 6.09 96.87
Testing set 0.973 6.97 4.94 97.08

MRA-1 All set 0.459 41.99 22.67 45.91
MRA-2 All set 0.488 44.19 30.31 48.81
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group samples, respectively. Figs. 4 and 5 show that both ANN
models yield good predictions for onshore samples and the soils
used by Sreedeep et al. [18] and Abu-Hassanein [11]. However, both
ANN models yield poor predictions for offshore soils. This may be
attributed to the fact that less data, only 18 data sets for offshore
soils, were used in the development of both ANN models. It must
also be appreciated that (refer Tables 1 and 2) RE values for offshore
samples is much lower, due to their high chloride content
(>500 ppm). In general, for these samples, CR reported by Eq. (3)
should be multiplied by a factor 0.7.

To assess the performance of MRA models (Eqs. (8) and (9)), RE was
computed for different soil samples used in the ANN models. The
computed RE values from Eqs. (8) and (9) were compared with the
values obtained experimentally, as shown in Fig. 6 for all samples,
respectively. Fig. 6 shows that Eqs. (8) and (9) yield poor predictions.

To observe the performance of the generalized relationships
Eqs. (2) and (3), RE was computed for different soil samples used in
the ANN models. The computed RE values from Eqs. (2) and (3) were
compared with the values obtained experimentally, as shown in
Fig. 7 for all samples. Fig. 7 shows that Eqs. (2) and (3) yield very
poor predictions. This is possibly due to the fact that Eqs. (2) and (3)
were derived by using the experimental data different from the
data used in this study.

Values of R2, RMSE, MAE, and VAF for the optimal ANN and MRA
models are listed in Table 8, which exhibits that both ANN models
are efficient in predicting the soil electrical resistivity while MRA
model yield poor predictions.
7. Conclusions

In this study, two different ANN models (ANN-1 and ANN-2) and
MRA models (MRA-1 and MRA-2) have been developed for deter-
mining the electrical resistivity of soils just by knowing their
thermal resistivity, soil type and the degree of saturation. For this
purpose, the experimental data for the onshore and offshore
samples and the data reported in the literature for different types of
soils were used. While, models ANN-1 and MRA-1 have two input
parameters, F and RT, models ANN-2 and MRA-2 have three input
parameters, Sr, F and RT. Both the Levenberg-Marquardt and the
Scaled Conjugate learning algorithms were used in the training
stage of the ANN models. One hidden layer is found to be sufficient
for these ANN models. The results obtained from ANN and MRA
models were compared vis-à-vis those obtained from the experi-
ments. It is found that the values predicted from the ANN models
match with the experimental values much better than those
obtained from MRA models. Further, ANN-2 model is found to yield
better predictions than the ANN-1 model. In addition, the perfor-
mance indices such as coefficient of determination, root mean
square error, mean absolute error, and variance were used to assess
the performance of the models developed. The study demonstrates
that the ANN models are able to predict electrical resistivity of
different soils, quite efficiently, and are superior to the MRA models.
Thus, ANN models can be used to predict electrical resistivity of
soils as an inexpensive substitute for the laboratory testing, quite
easily and efficiently.
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